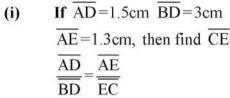
Distance Learning, Access, And Opportunity: Equality And E-Quality

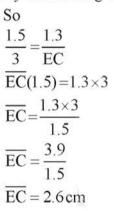
eilm.com.pk

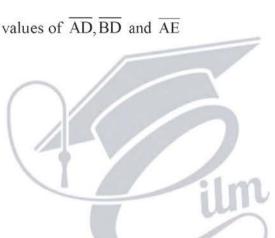
Exercise 14.1

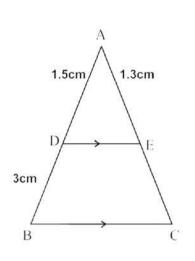
Q.1
$$\frac{\text{In } \Delta ABC}{\overline{DE} \parallel \overline{BC}}$$



By substituting the values of \overline{AD} , \overline{BD} and \overline{AE}



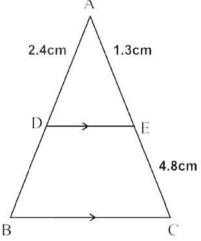




EC=4.8cm find AB $\overline{AC} = AE + EC$ $\overline{AC} = 3.2 + 4.8$ $\overline{AC} = 8cm$ $\therefore \frac{\overline{AD}}{\overline{AB}} = \frac{\overline{AE}}{\overline{AC}}$ $2.4 \times 8 = (3.2) \overline{AB}$

 $\overline{AB} = 6cm$

(ii)



Distance Learning, Access, And Opportunity: Equality And E-Quality

(iii) If
$$\frac{\overline{AD}}{\overline{BD}} = \frac{3}{5}\overline{AC} = 4.8cm$$
 find \overline{AE}

$$\overline{AC} = \overline{AE} + \overline{EC}$$

$$\overline{AC} = \overline{EC} + \overline{AE}$$

$$\overline{AE} = 4.8 - \overline{EC}$$

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AE}}{\overline{EC}}$$

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AC} - \overline{EC}}{\overline{EC}}$$

$$\frac{3}{5} = \frac{4.8 - EC}{EC}$$

$$3(\overline{EC}) = 5(4.8 - \overline{EC})$$

$$3(\overline{EC}) = 24 - 5(\overline{EC})$$

$$3(\overline{EC}) + 5(\overline{EC}) = 24$$

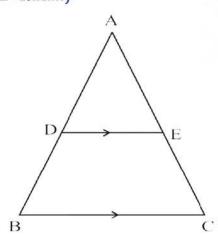
$$8(\overline{EC}) = 24$$

$$\left(\overline{EC}\right) = \frac{24^3}{8}$$

$$\frac{\overline{EC} = 3cm}{AE = \overline{AC} - \overline{EC}}$$

$$=4.8-3$$

$$=1.8cm$$



If $\overline{AD} = 2.4 \text{cm} \overline{AE} = 3.2 \text{cm} \overline{DE} = 2 \text{cm} \overline{BC} = 5 \text{cm}$. Find \overline{AB} , \overline{DB} , \overline{AC} , \overline{CE} . (iv)

$$\frac{\overline{AD}}{\overline{AB}} = \frac{\overline{AE}}{\overline{AC}} = \frac{\overline{DE}}{\overline{BC}}$$

$$\frac{2.4}{AB} = \frac{3.2}{AC} = \frac{2}{5}$$

$$\frac{2.4}{AB} = \frac{2}{5}$$

$$AB^{-}5$$

$$(2.4)5 = 2(AB)$$

$$\frac{12.0}{2} = AB$$

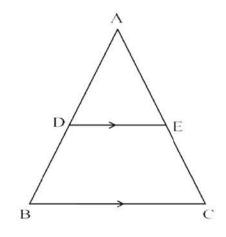
$$\overline{AB} = 6 \text{ cm}$$

$$\frac{3.2}{AC} = \frac{2}{5}$$

$$16.0 = 2(AC)$$

$$\frac{\cancel{16}^8}{\cancel{2}} = AC$$

$$\overline{AC} = 8cm$$



Distance Learning, Access, And Opportunity: Equality And E-Quality

$$\overline{DB} = \overline{AB} - \overline{AD}$$

$$\overline{DB} = 6 - 2.4$$

$$\overline{BD} = 3.6 \,\mathrm{cm}$$

$$\frac{\overline{AD}}{\overline{AB}} = \frac{\overline{AE}}{\overline{AC}}$$

$$\frac{AB}{2.4} = \frac{AC}{AE}$$

$$\frac{2.4}{6} = \frac{\overline{AE}}{8}$$

$$\overline{AE} = \frac{2.4}{6} \times 8$$

$$\overline{AE} = \frac{19.2}{6}$$

$$\overline{AE} = 3.2cm$$

$$\overline{CE} = \overline{AC} - \overline{AE}$$

$$\overline{CE} = 8 - 3.2$$

$$\overline{CE} = 4.8cm$$

If
$$\overline{AD} = 4x - 3$$
 $\overline{AE} = 8x - 7$

$$\overline{BD} = 3x - 1$$
 and $CE = 5x - 3$ Find the value of x

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AE}}{\overline{EC}}$$

By putting the value of AD, AE, BD and CE

$$\frac{4x-3}{3x-1} = \frac{8x-7}{5x-3}$$

By cross multiplying

$$(4x-3)(5x-3) = (8x-7)(3x-1)$$

$$20x^2 - 12x - 15x + 9 = 24x^2 - 8x - 21x + 7$$

$$20x^2 - 27x + 9 = 24x^2 - 29x + 7$$

$$0 = 24x^2 - 20x^2 - 29x + 27x + 7 - 9$$

$$4x^2 - 2x - 2 = 0$$

$$2(2x^2 - x - 1) = 0$$

$$2x^2 - 2x + 1x - 1 = \frac{0}{2}$$

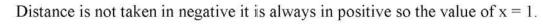
$$2x(x-1) + 1(x-1) = 0$$

$$(x-1)(2x+1)=0$$

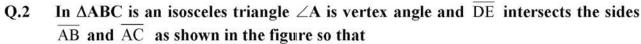
$$x - 1 = 0 \\
 x = 1$$

$$2x + 1 = 0$$
$$2x = -1$$

$$x = -\frac{1}{2}$$



eilm.com.pk



$$\overline{mAD}$$
: $\overline{mDB} = \overline{mAE}$: \overline{mEC}

Prove that $\triangle ADE$ is also an isosceles triangle.

D

В

Distance Learning, Access, https://eilm.com.pk/ And Opportunity: Equality And E-Quality

Given:

 \triangle ABC is an isosceles triangle, \angle A is vertex and \overline{DE} intersects the sides \overline{AB} and \overline{AC} .

$$\frac{m\overline{AD}}{m\overline{BD}} = \frac{m\overline{AE}}{m\overline{EC}}$$

$$m\overline{AD} = m\overline{AE}$$

Proof

$$\frac{\overline{AD}}{\overline{BD}} = \frac{\overline{AE}}{\overline{EC}}$$

Or
$$\frac{\overline{BD}}{\overline{AD}} = \frac{\overline{EC}}{\overline{AE}}$$
Or $\frac{\overline{AD} + \overline{BD}}{\overline{AD}} = \frac{\overline{AE} + \overline{EC}}{\overline{EC}}$

$$AB = AD + BD$$

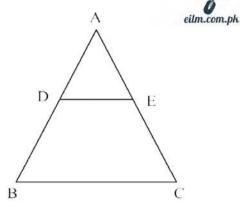
$$\overline{AC} = \overline{AE} + \overline{EC}$$

$$\frac{\overline{AB}}{\overline{AD}} = \frac{\overline{AC}}{\overline{AE}}$$

$$\overline{AB} = \overline{AC}$$

$$\underline{AD} = \underline{AE}$$

$$\overline{AB} = \overline{AC}$$
 (Given)



In an equilateral triangle ABC shown in the figure $m\overline{AE}: m\overline{AC} = m\overline{AD}: m\overline{AB}$ find Q.3 all the three angles of $\triangle ADE$ and name it also. Given

ΔABC is equilateral triangle

To find the angles of $\triangle ADE$

Solution:

$$\frac{m\overline{AE}}{m\overline{AC}} = \frac{m\overline{AD}}{m\overline{AB}}$$

All angles are equal as it is an equilateral triangle which are equal to 60° each

$$\angle A = \angle B = \angle C$$

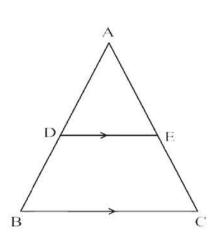
$$m\overline{BC}||m\overline{DE}|$$

$$\angle ADE = \angle ABC = 60^{\circ}$$

$$\angle AED = \angle ACB = 60^{\circ}$$

$$\angle A = 60^{\circ}$$

 \triangle ADE is an equilateral triangle



Distance Learning, Access, And Opportunity: Equality And E-Quality

- eilm.com.pk
- Q.4 Prove that line segment drawn through the midpoint of one side of a triangle an parallel to another side bisect the third side

Given

$$\overline{AD} = \overline{BD}$$

$$\overline{DE}||\overline{BC}$$

To Prove

$$\overline{AE} = \overline{EC}$$

$$\overline{DE}||\overline{BC}$$

In theorem it is already discussed that

$$\frac{\overline{AD}}{\overline{DD}} = \frac{\overline{AE}}{\overline{DD}}$$

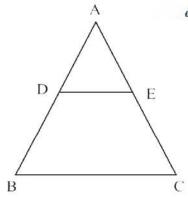
$$\overline{\overline{BD}} = \overline{\overline{EC}}$$

As we know
$$\overline{AD} = \overline{BD}$$
 or $\overline{BD} = \overline{AD}$

$$\frac{\overline{AD}}{\overline{AD}} = \frac{\overline{AE}}{\overline{EC}}$$

$$1 = \frac{\overline{AE}}{}$$

$$\overline{EC} = \overline{AE}$$



2

Q.5 Prove that the line segment joining the midpoint of any two sides of a triangle is parallel to the third side

Given

 ΔABC the midpoint of \overline{AB} and \overline{AC} are L and

M respectively

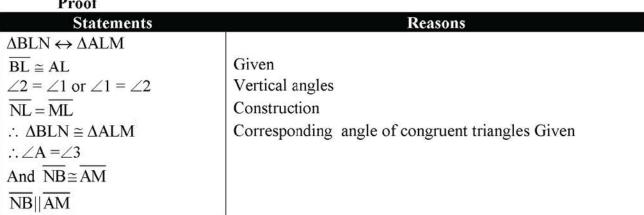
$$\overline{LM} || \overline{BC} \text{ and } m\overline{LM} = \frac{1}{2}\overline{BC}$$

Construction

Join M to L and produce ML to N such that

Join N to B and in the figure name the angles

$$\angle 1$$
, $\angle 2$, and $\angle 3$



B

Distance Learning, Access, And Opportunity: Equality And E-Quality

$$\overline{ML} = \overline{AM}$$

 $\overline{NB} \cong \overline{ML}$

 $\overline{BC}\,\overline{MN}$ is parallelogram

$$\therefore \overline{BC} || \overline{LM} \text{ or } \overline{BC} || \overline{NL}$$

$$\overline{BC}\!\cong\!\overline{NM}$$

$$mLM = \frac{1}{2}m\overline{NM}$$

Hence
$$m\overline{LM} = \frac{1}{2}m\overline{BC}$$

Given

(Opposite side of parallelogram BCMN)

(Opposite side of parallelogram)

Theorem 14.1.3

The internal bisector of an angle of a triangle divides the sides opposite to it in the ratio of the lengths of the sides containing the angle.

Given

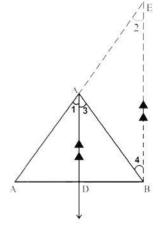
In $\triangle ABC$ internal angle bisector of $\angle A$ meets \overline{CB} at the points D.

To prove

$$m\overline{BD}:m\overline{DC}=m\overline{AB}:m\overline{AC}$$

Construction

Draw a line segment $\overline{BE} || \overline{DA}|$ to meet $\overline{CA}|$ Produced at E



Proof

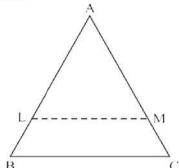
Proof	
Statements	Reasons
$::\overline{AD} \overline{EB} $ and \overline{EC} intersect them	Construction
$m\angle 1= m\angle 2(i)$	Corresponding angles
Again $\overline{AD} \overline{EB} $ and \overline{AB} intersects them	
∴ m∠3 = m∠4(ii)	Alternate angles
But $m \angle 1 = m \angle 3$	Given
∴ m∠2 = m∠4	From (i) and (ii)
And $\overline{AB} \cong \overline{AE}$ or $\overline{AE} \cong \overline{AB}$	In a Δ , the sides opposite to congruent angles are also congruent
Now AD EB	Construction
$\therefore \frac{\overline{\text{mBD}}}{\overline{\text{mDC}}} = \frac{\overline{\text{mEA}}}{\overline{\text{mAC}}}$	A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.
or $\frac{\overline{mBD}}{\overline{mDC}} = \frac{\overline{mAB}}{\overline{mAC}}$	$m\overline{EA} = m\overline{AB} (proved)$
Thus $m\overline{BD}:m\overline{DC}=m\overline{AB}:\overline{AC}$	

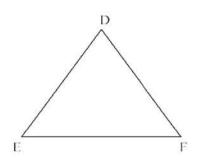
Distance Learning, Access, And Opportunity: Equality And E-Quality

eilm.com.pk

Theorem 14.1.4

If two triangles are similar, then the measures of their corresponding sides a proportional





Given

i.e
$$\angle A \cong \angle D$$
, $\angle B \cong \angle E$ and $\angle C \cong \angle F$

To Prove

$$\frac{m\overline{AB}}{m\overline{DE}} = \frac{m\overline{AC}}{m\overline{DF}} = \frac{m\overline{BC}}{m\overline{EF}}$$

Construction

- (I) Suppose that mAB>mDE
- (II) $m\overline{AB} \le m\overline{DE}$

On \overline{AB} take a point L such that $\overline{mAL} = \overline{mDE}$

On \overline{AC} take a point M such that $\overline{mAM} = \overline{mDF}$

Join L and M by the line segment LM

Proof	ilnu
Statements	Reasons
In $\triangle ALM \leftrightarrow \triangle DEF$	
∠A≅∠D	Given
$\overline{AL} \cong \overline{DE}$	Construction
$\overline{AM} \cong \overline{DF}$	Construction
Thus $\triangle ALM \cong \triangle DEF$	S.A.S Postulate
And $\angle L \cong \angle E$, $\angle M \cong \angle F$	(Corresponding angles of congruent triangles)
Now $\angle E \cong \angle B$ and $\angle F \cong \angle C$	Given
$\therefore \angle L \cong \angle B, \angle M \cong \angle C$	Transitivity of congruence
Thus $\overline{\mathrm{LM}} \overline{\mathrm{BC}}$	Corresponding angles are equal
Hence $\frac{m\overline{AL}}{m\overline{AB}} = \frac{m\overline{AM}}{m\overline{AC}}$	A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.
Or $\frac{\overline{mDE}}{\overline{mAB}} = \frac{\overline{mDF}}{\overline{mAC}}$ (i)	$m\overline{AL} = m\overline{DE}$ and $m\overline{AM} = m\overline{DF}$ (Construction)
Similarly by intercepting segments on	
\overline{BA} and \overline{BC} , we can prove that	
$\frac{\overline{mDE}}{\overline{mAB}} = \frac{\overline{mEF}}{\overline{mBC}}(ii)$	

Distance Learning, Access, And Opportunity: Equality And E-Quality

Thus
$$\frac{\overline{mDE}}{\overline{mAB}} = \frac{\overline{mDF}}{\overline{mAC}} = \frac{\overline{mEF}}{\overline{mBC}}$$

$$Or \ \frac{m\overline{AB}}{m\overline{DE}} = \frac{m\overline{AC}}{m\overline{DF}} = \frac{m\overline{BC}}{m\overline{EF}}$$

If $m\overline{AB} = m\overline{DE}$

Then in $\triangle ABC \leftrightarrow \triangle DEF$

(II) If $m\overline{AB} < m\overline{DE}$, it can similarly be proved by taking intercepts on the sides of ΔDEF

$$\angle A \cong \angle D$$

$$\angle B \cong \angle E$$

And $\overline{AB} \cong \overline{DE}$

So
$$\triangle$$
 ABC \cong \triangle DEF

Thus
$$\frac{m\overline{AB}}{m\overline{DE}} = \frac{m\overline{AC}}{m\overline{DF}} = \frac{m\overline{BC}}{m\overline{EF}} = 1$$

Hence the result is true for all the cases.

By taking reciprocals

$$A.S.A \cong A.S.A$$

$$\overline{AC} \cong \overline{DF}, \overline{BC} \cong \overline{EF}$$

